C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Real Analysis

Subject Code: 5SC02REA1		Branch: M.Sc.(Mathematics)	
Semester: 2	Date: 25/04/2019	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1	Attempt the Following questions	(07)
a)	Define: G_{δ} – set.	(02)
b)	Define: Measurable function	(02)
c)	If $A, B \subseteq R$ be such that $m^*(B) = 0$ then prove that $m^*(A \cup B) = m^*(A)$.	(02)
d)	If A is cantor set then find $m^*(A)$.	(01)
Q-2	Attempt all questions	(14)
a)	Prove that m is finitely additive and countably subadditive if m is countably subadditive.	(07)
b)		(07)
	OR	
Q-2	Attempt all questions	(14)
a)	Prove that P is non-measurable set. Where P contains one element from each equivalence classes E_{λ} and $\bigcup E_{\lambda} = X = [0,1)$.	(08)
b)	Let <i>m</i> be the set of all measurable subsets of <i>R</i> then prove that <i>m</i> is an σ -algebra on <i>R</i> .	(06)
Q-3	Attempt all questions	(14)
a)		(05)
	disjoint then for any $A \subseteq R$, $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right)$.	

- **b**) Let *f* be a bounded function on a measurable set *E* with $m(E) < \infty$ then prove that (05) $\inf_{\psi \ge f} \int_{E} \psi = \sup_{\phi \le f} \int_{E} \phi$, for all simple functions ϕ and ψ on E if *f* is a measurable functions on E.
- **c)** Let $E \subseteq R$ and χ_E is the characteristic function of E on R then χ_E is a measurable (04) function on R iff $E \in \mathcal{M}$.

OR

(14)

a) Let f be a bounded function on a measurable set E with $m(E) < \infty$. if (05) $\inf_{\psi \ge f} \int_{E} \psi = \sup_{\phi \le f} \int_{E} \phi$, for all simple functions ϕ and ψ on E then prove that f is a

measurable functions on E.

Attempt all questions

Q-3

- **b**) Let f, g be two measurable function on E, where $E \in m$ then for any $f \cdot g$ are also (05) measurable function on E.
- c) Give an example of measurable map which is not a Riemann integrable map and (04) explain.

SECTION – II

Q-4 Attempt the Following questions (07)Explain monotone convergence theorem is false for decreasing function. (02)a) Check whether or not the function $f(x) = x^2 \sin\left(\frac{1}{x}\right)$, if $x \neq 0$, f(0) = 0 is of b) (02)bounded variation on [0,1]Define: Positive and negative variation. (02)c) True/False: $f^{-}(x) = -\min(f(x), 0)$ d) (01)Q-5 Attempt all questions (14)State and prove Bounded convergence theorem. (06)a) Let f, g be two integrable map relative to positive and negative part over E then (04)**b**) *cf* is also an integrable map over *E* and $\int_{E} cf = c \int_{E} f$. c) State and prove Chebychev's inequality. (04)OR Q-5 Attempt all questions (14)

- Attempt an questions(14)a) State and prove Lebesgue dominated convergence theorem.(07)b) Define convergence in the sense of measure and also prove that there is a
subsequence $\{f_{n_k}\}$ of $\{f_n\}$ pointwise converges to f a.e. on E.
 - c) State Littlewoods's three principles. (03)

Q-6		Attempt all questions	(14)
	a)	State and prove Fundamental theorem of integral calculus.	(07)
	b)	State and prove Jordan's lemma.	(05)
	c)	Write monotone convergence theorem.	(02)
		OR	
Q-6		Attempt all Questions	
	a)	F is absolutely continuous function on $[a,b]$ iff F is indefinite integral.	(07)
	b)	Define: Bounded variation and if $f, g \in BV[a, b]$ then prove that $fg \in BV[a, b]$.	(05)
	c)	State Beppo-Levi's theorem.	(02)

